
Heidi Pan
Scripting Analyzers and Tools Group (Python, R, Julia, Go)
Intel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Python for Data Science & Machine Learning

2

https://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-
software-leaders.html

Python

Kaggle ML and Data Science Survey, 2017

Python

https://www.kaggle.com/sudalairajkumar/an-interactive-deep-dive-into-survey-results/data

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

From Prototype to Production

3

https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python

PERFORMANCE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

High Performance Python

4

Python

C

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

High Performance Python

Python

C

more cores,
more threads,
wider vectors, …

Intel® Performance Libraries

(generations of processors)

5

Libraries

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

scikit-learn

Accelerating Machine Learning

6

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

¾ Efficient memory layout
via Numeric Tables

¾ Blocking for optimal
cache performance

¾ Computation mapped to
most efficient matrix
operations (in MKL)

¾ Parallelization via TBB

¾ Vectorization

Try it out! conda install -c intel scikit-learn

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-
Scalable-processors-on-GCP.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scaling Machine Learning Beyond a Single Node

8

scikit-learn daal4py

Try it out! conda install -c intel/label/test daal4py

Simple Python API

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

load data from csv files into numpy arrays
files = ["kmeans_dense.csv", …]
dfin = [loadtxt(x, delimiter=',') for x in files]

compute initial centroids & kmeans clustering
centroids = d4p.kmeans_init(10, t_method="plusPlusDense", distributed=True)
result = d4p.kmeans(10, distributed=True).compute(dfin, centroids.compute(dfin))

mpirun -n 4 -genv DIST_CNC=MPI python ./kmeans.py

Distributed K-Means using Daal4py

9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Strong & Weak Scaling of K-Means via Daal4py

Hardware

Intel(R) Xeon(R) Gold
6148 CPU @
2.40GHz, EIST/Turbo
on
2 sockets, 20 Cores
per socket
192 GB RAM
16 nodes connected
with Infiniband

Operating
System

Oracle Linux Server
release 7.4

Data Type double

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

zzz

Easy, out-of-the-box access to high performance Python
• Prebuilt accelerated solutions for data analytics, numerical computing, etc.
• Drop in replacement for your existing Python. No code changes required.

Learn More: software.intel.com/distribution-for-python

mpi4py smp

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

13

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits
referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

13

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Rollin Thomas
NERSC Data and Analytics Services
IXPUG
2018-05-10

Python at NERSC

Outline

1. Python enables HPC science at NERSC
Orchestration • Workflows • Analytics • HPC Apps

2. How we help Python users at NERSC
Productivity • Performance

3. Experimental/Observational Science Engagements
Python in NESAP for Data Projects w/Intel

Science via Python@NERSC

 Data Model Residuals

Sky Survey Catalogs for Cosmology

(Dey et al. 2018)

Powering Workflows to
Understand Properties
of Materials

Modeling Dark Matter and
Dark Energy

PIC Code for Plasmas and
High Current Particle Beams

Warp

LHC ATLAS Data
Processing Workflow

ML/DL

Python in Edge Services
Data Sharing Across
Facilities

Interactive Tools

Interfaces to HPC
resources & workflows

Rich Visualizations and UIs

enables science through . . .

Interactive Supercomputing

Web Browser JupyterHub
Web Server

Cori Login Node
Notebook

Server Process
Kernel

Process

Cori Compute Node
Notebook

Server Process
Kernel

Process

Cori Compute Node

Notebook
Server Process

Cori Compute NodeCori Compute NodeCori Compute Node
Kernel

ProcessKernel
ProcessKernel

Process

--qos=interactive

Python in HPC Jobs at NERSC

Around 3% of NERSC hours on Cori in the
past year easily detected as Python jobs*:

srun -n … python whatever.py …

This is a lower limit, as users:
● Often make main programs executable
● Use Python in containers to scale up

* Production batch jobs, not use on shared login nodes.

Packages Users Say They Use

* or concurrent.futures

*

2017 NERSC User Survey
656 total respondents
N=336 reporting use (51%)

Users also added:
 Numba
 Healpy

Monitored Imports (Cori)
MODS* Statistics
Recent 30 day period
Compute nodes only
NERSC’s modules only

* MODS = Monitoring of Data Services at NERSC = BI Project in DAS

NERSC’s Python Strategy

Focus on user productivity.
Support familiar, trusted, up-to-date libraries.
Find ways to put performance in user reach.

Examples:
Threaded libraries: Intel MKL
Support cluster scaling: Cray+mpi4py
Close architecture gaps: Containers

NERSC Python: Anaconda
Most well-known and widely used distribution.
Designed around analytics, statistics, ML/DL.
“Personalized” environments and package manager.
Easily provide access to Intel Python Distribution.

2016: MKL added, and Intel upstreams optimizations:
NERSC drops its builds of Python on Cray the same
year.

Other options for HPC:
Source builds, Spack, etc.

Handling MPI with mpi4py

Cori Aries Interconnect

Cluster parallelism with MPI via mpi4py:
MPI-1/2/3 specification support
OO interface ~ MPI-2 C++ bindings
Point-to-point and collectives
Picklable Python objects & buffers

Build mpi4py & dependents with
Cray MPICH:

python setup.py build --mpicc=cc
python setup.py install

Cray-provided
Compiler wrapper

Containers
and Python go well together at NERSC

Motivations, esp. for data science:
Flexibility Convenience
Consistency Reproducibility

Some Options:
Docker Shifter (~Docker on Cray)
Singularity CharlieCloud

Nice recent blog summary of the state of HPC containers:
https://www.stackhpc.com/the-state-of-hpc-containers.html

“Slow Launch” at Scale
Python’s import is metadata intensive,
 ⇒ catastrophic contention at scale
 ⇒ it matters where you put your env

Project (GPFS):
For sharing large data files

Scratch (Lustre):
OK, but gets purged periodically!

Common (GPFS):
RO w/Cray DVS client-side caching
Open to users now, was only staff

Shifter (Docker Containers):
Metadata lookup only on compute
Storage on compute is RAM disk
ldconfig when you build image

Previous 6 months
150 nodes
4800 MPI ranks
import numpy
import astropy

better

worse

[Median launch time incl. MPI_Init()]

Python on Knights Landing
Things will work, but at least,

● Understand and use numpy array syntax, broadcast
rules, and scalar/“vector” interfaces to functions.

● Use threaded+vectorized libraries and compiled
extensions, minimize time outside of using them.

● There may, in fact, be more than one way to do it;
Prepare to rethink algorithms, memory usage, etc.

● Layer use of profiling tools to identify/assess hotspots.

NESAP for Data
NERSC Exascale Science Applications Program for Data:
Users whose applications process, analyze, and/or simulate data sets or
data streams from experiments and instrumentation supported by DOE
need help preparing for extreme scale and exascale computing.

Early
Engagement

with Code
Teams

Expanded
Access to

KNL + Data
Ecosystem

Close
Interactions

with
Vendors

Postdoc
Fellowship
Program

Developer
Workshops,
“Dungeons”

Training
Docs, Online

Modules

Leverage
Community

Efforts

Python NESAP for Data Projects

TomoPy (Python & C):
Tomographic data processing and image reconstruction
PI: Doga Gursoy, Argonne National Laboratory

DESI Pipeline (As Pure Python as Reasonably Possible):
Baryon acoustic oscillations (DESI Project)
PI: Stephen Bailey, Lawrence Berkeley Laboratory

TOAST (Time Ordered Astrophysics Scalable Tools, Python & C++):
Cosmic microwave background data analysis and simulation (CMB S4)
PI: Julian Borrill, Lawrence Berkeley Laboratory

TomoPy DESI TOAST

DESI Fiber Positioner Petal
1 Exposure = 30 Frames

= 15,000 Traces

Science Purpose: Spectroscopy for Dark Energy science
● 3D map of the Universe over 10 billion years
● Spectra of 10’s of millions of galaxies and quasars
● Create flux-calibrated 1D tables of flux vs wavelength of

Galaxies, quasars, etc. from 2D CCD image frames

Algorithms and Methods
● Scientific Python stack (NumPy, SciPy, etc.; threaded)
● Linear algebra (esp. Hermitian eigen-decomposition)
● Special function evaluations, fitting functions to data
● MPI (mpi4py) data-parallel processing + Shifter to scale up

Production Requirements
● Real-time pressure to do real-time survey planning each day

DESI [Bailey, Stephey; Pavlyk, Douyeb, Fernandez, Hogan]

DESI Optimization & Scaling

Simulation Code (Simulate Spectra on CCDs): 1.5-1.7x on HSW, multi-node scaling w/MPI
● Numba JIT compilation to speed up 2 lines of expensive matrix slicing
● MPI work to scale up the code:

○ Broadcast/reduce to scatter/gather where best use, complete initial I/O faster
○ Multi-level Comm scheme to optimally fill nodes
○ Scale tests up to 60 nodes so far, will be used in production soon
○ Single exposure (30 frames simultaneously) in 8 minutes
○ Roughly equal performance between multiprocessing and MPI on single node

Main Extraction Code (1D traces from CCD images)
● Main bottleneck is legval in NumPy (scalar/vector args) observed at first Dungeon.
● Precompute legval w/large vector input (not scalar): promising but delicate refactor.
● Also legval itself: 4x speedup with loop unrolling and Numba.
● Using some of the code as a testbed for initial experimenting with PyPy.

PyHPC 2018

At SC18!

8th Workshop on Python for
High-Performance and
Scientific Computing

Conclusion

Python fills numerous critical roles at HPC scientific
computing centers like NERSC.

Especially true in experimental/observational sciences,
data processing/analysis more than analytics for now.

Achieving good Python performance is challenging
and users (not often HPC-oriented) need to partner
with center staff and vendors/developers to get it.

